L4

JEFF ORTHOBER

THEY SAY THAT NECESSITY IS THE
mother of invention. Some-
times, however, convenience is.
This article describes an
EPROM emulator for an IBM
PC. When you're designing a
new project, you can save a lot of
time by using a “fake” EPROM
instead of going through the
usual program and erase cycle.

This project uses static RAM
on an IBM PC plug-in card to
emulate the 2764. Since the
2764 is an 8K x 8-bit EPROM,
the 6264 8K x 8-bit static RAM
IC will work fine. To use the em-
ulator, you must download the
bits to the RAM. Then plug a
cable from the emulator in the
EPROM’ socket of the project
you're developing.

The emulator was built on an
IBM PC prototyping board from
JDR Microdevices, part number
JDR-PR2. (Similar prototyping
boards are available from sev-
eral manufacturers.) Only the
necessary buffering and cabling
had to be added to complete the
project. The IBM PC bus lines
that are provided by the pro-
totyping board are lines ao
through As. AEN. RESET. -MEMR,
MEMW, -10R, and -1ow, and lines
po through p7. All of the lines
are buffered, and the data lines
are fully buffered—that is, they
are three-stated.

The prototyping board is acti-
vated when its /O read or write
line is high., DMA address en-
able is low, and the on-board
comparator’s output is high.
The comparator on the board
defaults to hexadecimal address
300 through 31F. The ports are
subdivided eight times by a 3-
to-8 decoder, providing lines
-seLo through -seL7 on the
board. The default settings are
shown in Table 1.

TABLE 1
Select Line 1/0 Port (hex)
-SELO 300 - 303
-SELA1 304 - 307
-SEL2 308 - 30A
-SEL3 30C - 30F
-SEL4 310- 313
-SEL5S 314-317
-SEL6 318-31B
-SEL7 31C - 31F

EPROM
EMULATOR

Build a 2764

fake EPROM project for the IBM PC.

=
"]
oo —out H— Do
o :’ o D
02 A @
s |8 R
D4 asf? - A3 D4
05 adi2 M DS|
D6 Qs 'lﬁ A5 D§|
07 o8 'g Ymw o7
% o i— =l =
88 00 NG | tesv
‘ 46V A
s W
I -A
02
o= tur . H %
o a1 | | | =
2
e T
= as
06 04
r-SEI.D D6 [* 3
o7 o8
oSELL oLk ar
Ves Vo
10 o
BUFFERED
e :
Do -OuT
o oo
2
[+ o2
M o
05 (=24
D8 as |
0 D7 08| 2
L_ clk Q7 E bt I
v, = 5]
55 -
= = ATk
TEe
TS e
] i
[Ml PIN PN
ATD AZ| Lo MALE DIP
7 18 RIBBON CABLE
'Gs ol 3
D7 AD
|21} ol 2 >
= o
3
e iR

5

2

B
=

HETEL]

FIG. 1—STATIC RAM AND AN IBM PC can emulate a 2764 EPROM.

Circuitry

Figure 1 is the schematic of
the EPROM emulator. Data from
the IBM PC bus is latched on
different select lines: -seLo is for
the lower 8 bits of the address to
the 6264. -seL1 is reserved for
the upper address bits, -sgLz is
to read or write data to the 6264

(reading is for verifying), and
-sEL3 latches the control lines to
IC3. Bit O from IC3 (-pc) enables
the buffers for IBM PC com-
munication and bit 1 (-ep) en-
ables EPROM communication.

On the PC side, three
74L.5374 latches (IC1-IC3) in-
put the fully-buffered address

MON SoII0N293 ‘9661 Arenigay

w
©

8 Electronics Now, February 1996

and control lines and a
7415244 buffer (IC5) inputs the
control lines that aren’t fully
buffered. Three 74LS244 buff-
ers (IC6-IC8) allow communi-
cation with the target project. A
ribbon cable with a 28-pin male
DIP on the end (J1) plugs into
the target project's EPROM
socket. The EPROM signals are
accessed from a 50-pin header
on the prototyping board.

. Listing 1 is a Turbo Pascal
program that takes a binary file
that has been assembled for the
target project and loads binary
data into the 6264 using /O
commands.

Construction

The prototype was built by
mounting all parts on the pro-
totyping board and by point-to-
point wiring them together. You

PARTS LIST
IC1-IC3—74L.S374 8-bit latch
IC4—6264 8K x 8 static RAM
IC5-1C8—74L.5244 8-bit buffer

- J1—28-pin male DIP (see text)
28-conductor ribbon cable (three
feet, maximum), 28-pin dual-row
female header connector, pro-

totyping board.

must fabricate the cable that
connects the prototyping board
to the EPROM socket in the de-
vice you want to control. The ca-
ble should be no longer than
three feet. Install a 28-pin dual-
row female header connector on
a 28-conductor ribbon cable
and connect pins 1 through 28
of the other end of the ribbon
cable (wire by wire) to a 28-pin
male DIP. You can solder the
wires directly to the female side
of a 28-pin IC socket or you can
install a 28-pin male IDC (in-
sulation displacement con-
nector) DIP. Note that the
prototyping board contains a
50-pin-male header, but only
pins 1 through 28 are used. Be
sure to connect the female head-
er connector only to pins 1
through 28 of the header.

The fake EPROM is now ready
to trick a circuit into thinking
that a real EPROM is in place. 0

LISTING 1
program feprom (input, output);

{this program will test and load the Eprom simulator 6264 8k
memory. The first parameter if specified will be the load file
and program will terminate, if no parameter is specified, then
the program will go into interactive mode. Uses Turbo Pascal V3.)

const
port add low - $300; (6264 low byte address register)
port _add high - $304; (6264 high byte address register)
port _data = S308: (6264 data register)
port control = $30C; {buffer control register)

(bit 0 - pc, bit 1 -eprom)store
control pc = SG2; (buffer control setting, pc)
control eprom - $01; (buffer control setting, epram)
max mem = S1FFF? (max size of eprom (0 - 1FFF))

type

str = string [80];

arr = array [0..max mem] of byte; (pc array to store file)

{set the buffers to cammunicate with pc)
procedure set pc;
begin

port [port control] := control pc;
end; :
{set the buffers to commnicate with cable)
procedure set eprom;
begin

port [port control] s= control eprom;
end;

. (write proper hi and low byte address to latches)

procedure write address(add : integer):

var
high : integer;
low : integer;

begin
low := add and $FF
high := (add and $FF00) div $0100;
port [port _add low] := low;
port[port_add high] := high;

end;

(check the ram bit wise)
procedure bittest;

var 1 : integer;
p : integer;
begin
writeln ('Bit test');
i:=0;
while (i <= max mem) and (not keypressed) do
begin
write address(i);
port [port _data] := $00;
if port [port data] <> $00 then
writeln('Q Error at ',i:0,' ',port|port data] :0);
port [port_data) := $FF;
if port[port data] <> $FF then
writelin('FF Error at ',i,' ', port[port data] :);
1 =i
end;
writeln('Bit test done');
end;

(check the ram locations)
procedure numbertest;
var i : integer;

c : integer;
begin

Py nmy i B o i

buffertest;
Jloadfile; i ; co
verlfyfll.E" o e :

‘solu0Ne|T ‘9664 A1Bniqe-

